	M.S. RAMAIAH COLLEGE OF ARTS, SCIENCE AND COMMERCE						
	Course Outcomes for Msc(Micro Biology) Program						
Program	CourseCode	CourseName	COCode	со			
M.Sc	MBH101	Bacteriology	CO1	Student is introduced to Microbiology, the classification and			
Microbiology		and Viology		recent trends in taxonomy. The concepts of bacterial phylogeny			
				and construction of phylogenetic trees.			
M.Sc	MBH101	Bacteriology	CO2	The details of morphology and ultrastructure of bacteria. The			
Nicrobiology		and viology		characteristics, ultrastructure and significance of			
M Sc	MBH101	Bacteriology	CO3	Morphological characteristics of different groups of bacteria			
Microhiology	WIBITIOT	and Viology	003	such as Myconlasma, Archaebacteria, Actinomycetes			
incrosicios,		und viology		Rickettsia.			
M.Sc	MBH101	Bacteriology	CO4	Learn in details with examples the nutritional requirements,			
Microbiology		and Viology		cultivation media for microbes. Microbial growth kinetics and			
				factors affecting growth, mechanism of cell cycle in bacteria.			
M.Sc	MBH101	Bacteriology	CO5				
Microbiology		and Viology					
M.Sc	MBH101	Bacteriology	CO6	Write down in depth the various methods of cultivation of			
Microbiology		and Viology		bacterial and animal viruses and their assay methods.			
				,			
M.Sc	MBH102	Eukaryotic	CO2	Understand the classification and characteristics of Protozoa			
Microbiology		Microbiology		with few examples and cultivation methods			
M.Sc	MBH102	Eukaryotic	CO3	Deliberate the details of Fungal cell, spores, mechanism of			
Microbiology		Microbiology		growth, cultivation and prevention of fungal growth			
		Fukanyatia	CO1	Write down the observatoristics of Conoral features, diversity			
Nicrobiology	IVIBRIUZ	Eukaryotic	04	Ainsworth system of classification structure, reproduction and			
Wherebiology		Whereboldingy		significance of Allomyces, Claviceps, Puccinia, Eusarium			
M.Sc	MBH102	Eukarvotic	CO5	understand the different Substrate groups: saprophytic,			
Microbiology		Microbiology		parasitic, keratinophilic, coprophilous; substrate successions,			
				parasitism, predation, mutualism and symbiosis with plants and			
				animals. Diversity of aquatic fungi. Economic importance of			
				fungi.			
M.Sc	MBH102	Eukaryotic	CO6	Write down in depth isolation and cultivation of algae invitro			
wiicrobiology		witcrobiology		and mass production of algae			
M.Sc	MBH102	Eukaryotic	C07	Understand the details of Role of algae as Food, theraputics,			
Microbiology		Microbiology		biofuels, heavy metals removal			
MSc		Eukonyotic	CO1	Understand in detail the general feature electification			
Nicrobiology				diversity stucture reproduction and significance of Algae			
INICIODIOIOSY		whereboldingy		aversity, statute, reproduction and significance of Aigae.			
M.Sc	MBH103	Microbial	CO1	Metabolism and Bioenergetics			
Microbiology		Phyosology &					
		Biochemistry					

M.Sc	MBH104	Microbial &	CO1	
Microbiology	_	Biochemical		
		Techniques		
M.Sc	MBP106	Bacteriology ,	CO9	understand the mechanisism of Growth in fungi-linear and
Microbiology		Viology		biomass
		&Eukaryotic		
		Microbiology		
M.Sc	MBP106	Bacteriology,	CO1	Specify in depth Isolation of microorganism:Serial dilution, pure
Microbiology		Viology		culture techniques
		&Eukaryotic		
		Microbiology		
M.Sc	MBP106	Bacteriology,	CO10	Understand in depth effect of pH, temperature, and nutritional
Microbiology		Viology		factor on growth of fungi
		&Eukaryotic		
		Microbiology		
M.Sc	MBP106	Bacteriology ,	CO12	Learn the details of Isolation of algae from soil and water
Microbiology		Viology		
		&Eukaryotic		
		Microbiology		
M.Sc	MBP106	Bacteriology ,	CO12	Learn the details of Isolation of Protozoa from soil and water
Microbiology		Viology		
		&Eukaryotic		
		Microbiology		
M.Sc	MBP106	Bacteriology ,	CO2	Understand the characteristics of Culturing and cultural
Microbiology		Viology		characteristics of microorganisms
		&Eukaryotic		
		Microbiology		
M.Sc	MBP106	Bacteriology,	CO3	Specify the classification and characteristics of Staining
Microbiology		Viology		techniques:Simple, Differential:acid-fast, endospore, capsule,
		&Eukaryotic		cell wall, cytoplasmic inculsionvital stains: flagella, spore and
		Microbiology		nuclear staining
M.Sc	MBP106	Bacteriology ,	CO4	Deliberate in details with examples Biochemical tests for
Nicrobiology		VIOIOGY		Identification of Bacteria, Identification of bacteria by API
		& Eukaryotic		system
		Nicrobiology	005	Specify the details of Destarial growth measurement/call count
Microbiology	IVIBP100	Bacteriology,	COS	specify the details of Bacterial growth measurement(cell count,
wiiciobiology		8. Eukarvotic		
		Microbiology		
M Sc	MBP106	Bacteriology	C06	Delibrate the technique of Isolation of hacterionhages from
Microhiology	TODE TOO	Viology		sewage and flies
i i i i i i i i i i i i i i i i i i i		& Fukarvotic		
		Microhiology		
M.Sc.	MBP106	Bacteriology	C07	Learn in detail the different methods of Isolation of fungi from
Microbiology		Viology		soil:Dilution plate method. Warcup method, stamping method
		& Fukarvotic		
		Microbiology		

M.Sc Microbiology	MBP106	Bacteriology, Viology &Eukaryotic Microbiology	CO8	Learn the different methods of Isolation of fungi from plant material
M.Sc Microbiology	MBT401	Microbial Phyosology & Biochemistry, MicrobialTech niques	CO2	learn in detail of isolation, characterisation and preservation of purecultures
M.Sc Microbiology	MBT401	Microbial Phyosology & Biochemistry, MicrobialTech niques	CO2	study principle and application of different types of microscopes.
M.Sc Microbiology	MBT401	Microbial Phyosology & Biochemistry, MicrobialTech niques	CO3	Learn about direct and indirect methods of measurement of microbial growth.
M.Sc Microbiology	MBT401	Microbial Phyosology & Biochemistry, MicrobialTech niques	CO4	analysis of metagenomics
M.Sc Microbiology	MBT401	Microbial Phyosology & Biochemistry, MicrobialTech niques	CO5	Understand the principle and application of spectroscopy.
M.Sc Microbiology	MBT401	Microbial Phyosology & Biochemistry, MicrobialTech niques	CO6	learn indetail principle and application of chromatography.
M.Sc Microbiology	MBT401	Microbial Phyosology & Biochemistry, MicrobialTech niques	CO7	study isotope techniques
M.Sc Microbiology	MBH201	Microbial Genetics	CO1	Specify in depth the structure of prokaryotic genome and E.coli chromosome.
M.Sc Microbiology	MBH201	Microbial Genetics	CO2	Deliberate in details the structure and organization of eukaryotic genome. Histone modifications and their effects on chromosome structure and function. The different types of DNA sequences, law of DNA constancy, genome size and C- value paradox.

ſ	M.Sc	MBH201	Microbial	CO3	Understand in depth Molecular basis of spontaneous and
	Microbiology		Genetics		induced mutations and their role in evolution; mutagens, types
					of mutations, Ames and other toxicity testing.
ľ	M.Sc	MBH201	Microbial	CO4	Understand in detail Genetic recombination in bacteriophages
	Microbiology		Genetics		and E. coli. Homologous recombination, role of RecA and other
	07				recombinases, generalized & specialized transduction.
					transformation and conjugation.
ŀ	M Sc	MBH201	Microbial	CO5	Deliberate in denth mechanisms and applications of bacterial
	Microbiology	11121201	Genetics	000	transformation: Host cell restriction: Transduction:
	When obloto by		Genetics		complementation; conjugation and transfection. Genetics of
					fungi-alteration of generation induction of mutation in
					Neurosnora crassa and yeast, cytonlasmic inheritance and
					hiochemical mutants
-	MSc		Microbial	C06	Deliberate in details with application Diasmids, description
	Microbiology	WIDH201	Constics	000	types and their uses in genetic analysis. Pasterienhages
	wicrobiology		Genetics		types and their uses in genetic analysis. Bacteriophages,
					Lysogeny and lytic cycle in bacteriophages, and their uses in
ŀ	MG		N A a la avula u	606	microbial genetics.
	IVI.SC	MBH202	Noiecular	006	Learn in details with examples Control of gene expression at
	wicrobiology		вююду		transcription and translation level, gene sliencing
ŀ	M.Sc	MBH202	Molecular	CO5	Specify in details with examples regulation of gene expression
	Microbiology	101202	Biology	005	and operon concents
	iniciosicios,		Diology		
ſ	M.Sc	MBH202	Molecular	CO3	Deliberate in depth Transcription in prokaryotes and
	Microbiology		Biology		eukaryotes
	M.Sc	MBH202	Molecular	CO4	Deliberate the classification and characteristics of Translation in
	Microbiology		Biology		prokaryotes and eukaryotes and post translational
					modifications
	M.Sc	MBH202	Molecular	CO2	Write down in depth DNA replication in prokaryotes and
	Nicrobiology		Biology		eukaryotes
ŀ	M Sc	MBH202	Molecular	CO1	Structure DNA & RNA Mechanisms of DNA damage and renair
	Microhiology	1011202	Biology	001	Structure Drivit & Rivit. Mechanishis of Drivit duringe and repair
	Wherebiology		DIGIOBY		
ľ	M.Sc	MBH203	Environment	CO1	Aerobiology- Air spora in different layers of atmosphere,
	Microbiology		Microbiology		bioaerosol, assessment of air quality using principles of
					sedimentation, impaction, impingement, suction and filtration.
					Brief account of transmission of airborne microbes;
					Microbiology of indoor and outdoor. Allergy: Causes and tests
					for detection of allergy.
ľ	M.Sc	MBH203	Environment	CO2	Aquatic Microbiology: Fresh and marine ecosystem (estuaries,
	Microbiology		Microbiology		mangroves, deep sea, hydrothermal vents, salt pans, coral
	5,				reefs). Zonation of water ecosystem; upwelling, eutrophication;
					food chain in aquatic ecosystems. Role of methanotrophs in
					ecosystem. Potability of water, microbial assessment of water.
					water purification. Ground water types and their
					contamination. Biofilm. Waste treatment: sewage and effluent
					0

				treatment; primary, secondary and tertiary treatment, Solid waste treatment. Solid wastes as sources of energy and food
N4 Co		Faultagenerat		Coll Minshieler Platie and phistic intersting constants of
Microbiology	МВН203	Environment Microbiology	03	Soil Microbiology: Biotic and abiotic interactions, concepts of habitat and niche. Microbial communities; nature, structure and attributes, levels of species diversity, succession and stability, r and K selection, genetic exchange between communities. Biodiversity management and conservation. Role of microbes in organic solid waste treatment matter in various soil types, subterranean microbes. Biogeochemical cycles of carbon, nitrogen, phosphorous and sulphur.
M.Sc Microbiology	MBH203	Environment Microbiology	CO4	Diversity in anoxic eco system: Methanogens-reduction of carbon monoxide- reduction of iron, sulphur, manganese, nitrate and oxygen. Microbial transformations of Carbon, Phosphorus, Sulphur, Nitrogen and Mercury.
M.Sc Microbiology	MBH203	Environment Microbiology	CO5	Extremophiles: The domain Archaea, acidophilic, alkalophilic, thermophilc, barophilic and osmophilic and radiodurant microbes- mechanisms and adaptation. Halophilic- membrane variation- electron transport- application of thermophiles and extremophiles. Extremozymes. 6hrs Unit 6 Biodegradation: Role of microbes in degradation, Biodegradation of Xenobioticshydrocarbons, pesticides and plastics. Biodeterioration of wood, pulp and paper; Biosorption/bioaccumulation of heavy metals. Bioremediation of soil, air and water: various methods, advantages and disadvantages. Bioleaching of iron, copper, gold and uranium.
M.Sc Microbiology	MBH204	Food Microbiology	CO7	
M.Sc Microbiology	MBH204	Food Microbiology	CO1	Write down the details of Introduction: Development of food microbiology as a science, scope of food microbiology. Food as substrate for microorganisms, intrinsic and extrinsic factors affecting the growth of microbes, important microorganisms in food (molds, yeasts and bacteria) and their source (air, soil, water, plants and animals).
M.Sc Microbiology	MBH204	Food Microbiology	CO2	Write down in depth Food contamination and spoilage: Sources of food contamination. Principles of food spoilage; spoilage of cereals, sugar products, vegetables, fruits, meat and meat products, milk and milk products, fish and sea foods, poultry; spoilage of canned foods; conventional and modern methods for detection of spoilage and characterization
M.Sc Microbiology	MBH204	Food Microbiology	CO3	Write down the details of Food-borne infections and intoxication: Bacterial- Brucella, Bacillus, Clostridium, Escherichia, Listeria; Food intoxication- Botulism, Staphylococcal. Mycotoxins & their types – aflatoxins, ochratoxins, fuminosins, trichothecenes, zealenone, ergot alkaloids; food borne outbreaks and lab testing procedures. Preventive measures. Molds, Algae, Protozoa, Viruses.

N	Л.Sc	MBH204	Food	CO4	Specify in depth Food preservation: Principles and methods of
N	Aicrobiology		Microbiology		food preservation- Physical (temperature, irradiation, drying,
					canning, processing for heat treatment-D, Z and F values)
					Chemical (Organic acids, food additives. Class I and Class II
					preservatives), Biopreservation (Lactic acid bacteria). Food
					Packaging- Types of packaging materials, properties and
					benefits.
	A.Sc	MBH204	Food	CO5	Learn in depth Microbial and Fermented foods: SCP- Nutritional
IV	Viicrobiology		wiicrobiology		& therapeutic importance, Quorn and SCO and their industrial
					(sources), Reverses (cores and coffee), Bread Idli, Dairy foods
					(sheese srikband) production methods of Kefir Vogurt
					Acidonhilus milk: Prohiotics, Prehiotics and Synhiotics
					Nutraceuticals (Cr/Se veast) functional foods and their quality
					standards. Application of fungal pigments in food industry.
N	Л.Sc	MBH204	Food	CO6	Deliberate in details with examples Food and sanitation: Good
N	Aicrobiology	-	Microbiology		Hygiene Practices, Sanitation in manufacture and retail trade;
	0,				food control agencies and their regulation, hazard analysis and
					critical control points (HACCP); GMP, plant sanitation –
					employees" health standard, waste treatment, disposal, quality
					control. Recent trends and development in food technologies in
					India.
N	Л.Sc	MBS205	BioInformatics	CO1	Specify the details of Introduction to computer
	viicrobiology				
N	Л.Sc	MBS205	BioInformatics	CO2	Specify in depth Computer Network and Programming
N	Aicrobiology				Languages
N.	1.50	MARSONE	Pioloformatics	<u> </u>	Deliberate the characteristics of Polational Databases
	vi.sc Aicrobiology	IVID3205	DIOITIIOTIIIduics	COS	Management
10	viiciobiology				Wandgement
N	Л.Sc	MBS205	BioInformatics	CO4	Identify the classification and characteristics of biological
N	Aicrobiology				databases, sequence analysis methods
	A Sc	MBS205	BioInformatics	CO5	Understand the characteristics of Protein Structure and
N	Aicrobiology		Bioinformatios		Molecular Interaction
	0,				
N	A.Sc	MBP206	Microbial	CO1	Learn the details of Basic techniques of microbial genetics and
N	Aicrobiology		Genetics &		molecular biology
			Molecular		
	4.6	1400207	Biology	601	
	VI.SC	WIBP207	Environment		various techniques and methods of microbial analysis of food
	MICLODIOIORY		& Food		
			Microhiology		
M	Л.Sc	MBH303	Immunology	MBH30	Immune system and Immunity
N	Aicrobiology			3UNIT1	
	- 07				

M.Sc Microbiology	MBH303	Immunology	MBH30 3UNIT2	Antigen and Antibodies
M.Sc Microbiology	MBH303	Immunology	MBH30 3UNIT3	Antigen Antibody reactions
M.Sc Microbiology	MBH303	Immunology	MBH30 3UNIT4	Hypersensitivity reactions
M.Sc Microbiology	MBH303	Immunology	MBH30 3UNIT5	Major histocompatibility complex
M.Sc Microbiology	MBH303	Immunology	MBH30 3UNIT6	Immunization
M.Sc Microbiology	MBH303	Recombanent DNA Technology	CO3	methods of cloning in prokaryotes and eukaryotes and DNA libraries
M.Sc Microbiology	MBH303	Recombanent DNA Technology	CO4	Understand the principles of molecular techniques and applications
M.Sc Microbiology	MBH303	Recombanent DNA Technology	CO5	Learn the methods of DNA sequencing and mapping of genes
M.Sc Microbiology	MBH303	Recombanent DNA Technology	CO6	learn the principles of chemical and enzymatic synthesis of genes with examples
M.Sc Microbiology	MBH303	Recombanent DNA Technology	C07	Applications of recombinant DNA technology in various field
M.Sc Microbiology	MBH303	Recombanent DNA Technology	CO2	tools of genetic engineering and different types of vectors
M.Sc Microbiology	MBP306	Recombanent DNA Technology & BioInformatics	CO1	Understand in depth basic techniques of recombinant DNA technology
M.Sc Microbiology	MBH401	Agricultural Microbiology	CO2	Write down the characteristics of Biological Nitrogen Fixation- Symbotic, nonsymbiotic, Associative nitrogen fixation mechanisms, genes involved, Nif gene, Nod factor, noduline genes, Genetic engineering of Biological Nitrogen Fixation
M.Sc Microbiology	MBH401	Agricultural Microbiology	CO3	Understand in depth Plant-Microbes interactions
M.Sc Microbiology	MBH401	Agricultural Microbiology	CO4	Deliberate in depth Bioinoculants: Biopesticides andBiofertilizer -types, production and quality control. Cultivation and mass production of bioinoculants-

M.Sc Microbiology	MBH401	Agricultural Microbiology	CO5	Identify in depth Molecular Plant Pathology- Recognition of host, entry, role of enzymes, toxins, R and r genes, phytotoxins, Phytoalexins, PR proteins, plant defense mechanisms against pathogens, Transgenic approaches for crop protection
M.Sc Microbiology	MBH401	Agricultural Microbiology	CO6	Learn the characteristics of Plant diseases-Symptomatology, etiology & control of Fungal, viral, Bacterial, mycoplasma, viroidal diseases
M.Sc Microbiology	MBH401	Agricultural Microbiology	CO1	Identify the characteristics of Microbes in Soil fertility, decompositon, effect of pesticides on soil
M.Sc Microbiology	MBH403	Microbial Biotechnology	CO4	Write down in details with application, if applicable, Microbial transformation and organic synthesis: Transformation of steroids and sterols, over production of glutathione by genetically engineered cells. Metabolic engineering for vitamin C production, synthesis of acrylamide by nitrile hydratase, synthesis of optically pure drugs.
M.Sc Microbiology	MBH403	Microbial Biotechnology	CO5	Identify the details of Nanotechnology: Introduction, Tools of nanosciences, Synthesis of Nanomaterials using microbes. Biopolymeric nanoparticles; nanosensors, biomedical applications, antimicrobial nanoparticles.
M.Sc Microbiology	MBH403	Microbial Biotechnology	CO6	Identify the characteristics of Bioethics and biosafety: Introduction, Human genome project and its ethical, legal and social implications. Biosafety guidelines and regulations for GMOs. GLP and GMP. Labelling of GM products. Ethics and safety of GM food. Testing of drugs on human volunteers.
M.Sc Microbiology	MBH403	Microbial Biotechnology	CO2	Understand the classification and characteristics of Microbial products for commercial use: Industrial production of organic acids (acetic acid, lactic acid). Amino acids (lysine, glutamic acid), Solvents (acetone, ethanol), Antibiotics (Cephalosporin, Streptomycin), Microbial polysaccharides (xanthan) and polyesters (PHB). Hormones (insulin), anticholesterol compound (Lovastatin). Vaccines (recombinant). Microbial insecticides. Secondary metabolites in bacteria and fungi (anti- cancer and antidiabetic compounds).
M.Sc Microbiology	MBH403	Microbial Biotechnology	CO3	Deliberate in details with examples Microbial enzymes: Industrial production of lipase, protease & asparaginase. Enzymes in - starch processing, food, textile, detergent, leather, breweries, pharmaceuticals, therapeutics, and diagnostics. Recombinant enzymes. Immobilized enzymes and cells: Techniques and types of immobilization, industrial applications of immobilization: merits and demerits.
M.Sc Microbiology	MBH403	Microbial Biotechnology	CO1	Specify the characteristics of Introduction: Principle, applications, economics and milestones in microbial technology
M.Sc Microbiology	MBH-301	Medical Microbiology	CO4	understand indetail the etiology, clinical symptoms, laboratory diagnosis and treatment of bacterial and protozoan diseases.

M.Sc Microbiology	MBH-301	Medical Microbiology	CO5	study in detail the etiology, clinical symptoms, laboratory diagnosis and treatment of fungal diseases.
M.Sc Microbiology	MBH-301	Medical Microbiology	CO6	understand classification and mechanism of antimicrobial agents, study of vaccins and probotics as therapeutic agents
M.Sc Microbiology	MBH-301	Medical Microbiology	CO2	Deliberate in detail the etiology, clinical symptoms, laboratory diagnosis and treatment of viral diseases.
M.Sc Microbiology	MBH-301	Medical Microbiology	CO3	Understand the details of principles and applications of various immuno and molecular diagnostic methods in microbiology
M.Sc Microbiology	MBH-301	Medical Microbiology	CO1	Specify the characteristics of normal microflora of the human body and its significance. The detailed mechanism of infection, pathogenesis and mode of transmission of pathogens in diseases.