

BENGALURU CITY UNIVERSITY

CHOICE BASED CREDIT SYSTEM (Semester Scheme with Multiple Entry and Exit Options for Under Graduate Course- as per NEP 2020)

Syllabus for B.Sc.Microbiology III & IV Semester

2022-23 onwards

Program Name	B.Sc.Discipline	Total Credits for the Program	Credits
Core	Microbiology	Starting year of implementation	2021-22

Program Outcomes: At the end of the program the student should be able to:

(Refer to literature on outcome-base deducation (OBE) for details on Program Outcomes)

- PO1. Knowledge and understanding of concepts of microbiology and its application in pharma, food, agriculture, beverages, nutraceutical industries.
- PO2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance
- PO3.Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues.
- PO4. Learning and practicing professional skills in handling microbes and contaminants in laboratories and production sectors.
- PO5. Exploring the microbial world and analyzing the specific benefits and challenges.
- PO6.Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors.
- PO7. Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.
- PO8. Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes.
- PO9.Understanding and application of microbial principles inforensic and working knowledge about clinical microbiology.
- PO10.Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards.
- PO11.Demonstrate the ability to identify key questions in microbiological research, optimize research methods, and analyse outcomes by adopting scientific methods, thereby improving the employability.
- PO12.Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology.

Assessment:

Weightage for assessments (in percentage)

TypeofCourse	FormativeAssessment/ IA	SummativeAssessment
Theory	40	60
Practical	25	25
Projects	-	-
Experiential Learning (Internshipsetc.)	-	-

Contents of Courses for B.Sc. Microbiology as Major Mode III A

er	4)	a £	, g	χ ₃		Mar	ks
Semester	Course	Course	Theory /Practica	Credits	PaperTitle	S.A	I.A
		DSC-7	Theory	3	Microbial Diversity	60	40
3.			Practical	2	Microbial Diversity	25	25
		OE- 3	Theory	3	Microbial Entrepreneurship	60	40
		DSC-8	Theory	3	Microbial Enzymology and Metabolism	25	25
4.			Practical	2	Microbial Enzymology and Metabolism	60	40
		OE- 4	Theory	3	Human Microbiome	25	25
	Exit Option wi	th Diploma in	Microbiology	(100 Credi	its)		

ProgramName	BSc Microbiology		Semester	III Sem
CourseTitle	Microbial Diversity			
CourseNo.	MBL-103	DSC -3T	No. of Theory Credits 4	
Contact hours	56hrs		Duration of ESA/Exam	2 Hours
Formative Asses	ssment Marks 40	Summative Assessment M	arks 60	

Course Pre-requisite(s):.

Course Outcomes(COs): At the end of the course the student should be able to:

- 1. Acquire knowledgeabout microbesand their diversity
- 2. Study the characteristics, classification and economic importance of Prokaryotic and Eukaryotic microorganisms.
- 3. Gain knowledge about viruses and their diversity

Content	Hrs
Unit-I	08 Hrs
Biodiversity and Microbial Diversity	
Concept, definition and levels of biodiversity; Biosystematics - Major classification systems-	
Numerical and Chemotaxonomy. Study and measures of microbial diversity; Conservation and	
Economic values of microbial diversity.	
Unit-II	
Diversity of Prokaryotic Microorganisms	16 Hrs
Distribution, factors regulating distribution.	
An overview of Bergey's Manual of Systematic Bacteriology.	
General characteristics; Classification; Economic importance of:	
Archaea: Thermus aquaticus, Methanogens	
Bacteria: Escherichia coli, Bacillus subtilis,	
Cyanobacteria: Microcystis, Spirulina	
Actinomycetes: Streptomyces, Nocardia, Frankia Ri	
ckettsiae: Rickettsia rickettsi	
Chlamydiae: Chlamydiatrachomatis	
Spirochaetes: Trepanemapallidum, Mycoplasma	

Unit-III	
Diversity of Eukaryotic Microorganism	16 Hrs
General characters; Classification- Economic importance	
Fungi: Ains worth classification-detailed study upto the level of classes, Salient features and	
reproduction. Type study: Rhizopus, Saccharomyces, Aspergillus, Agaricus, Fusarium	
Algae: Occurrence, distribution, and symbiotic association- Lichen; thallus organization and	
types. Type study: Chlorella, Diatom, Gracilaria,	
Protozoa: Classification up to the level of classes. Type study: Euglena, Trichomonas,	
Plasmodium, Trypanosoma	
Unit-IV	16 Hrs
Diversity of Viruses	
General structure, Isolation, purification and culturing of viruses. Principles of Viral	
Taxonomy- Baltimore and ICTV and the recent trends.	
Capsidsymmetry - Icosahedral, helical, complex	
Supplies y minery resonancement, nemeral, complex	
Animal:HIV,Corona,OrthoandParamyxovirus, Oncogenic virus	
Animal:HIV,Corona,OrthoandParamyxovirus, Oncogenic virus Plants:TMV, Papaya virus Microbial:T4, lambda, Cyanophages and mycophages.	

$Course Articulation Matrix: Mapping of\ Course Outcomes (COs) with Program Outcomes (POs 1-12)$

]	Progra	amC)utc	ome	es (F	POs)			
CourseOutcomes(COs)/ProgramOutcomes(POs)	1	2	3	4	5	6	7	8	9	10	11	12
Knowledge about microbes and their diversity		✓			✓			√				
Study, characters, classification and economic importance of Pro-eukaryotic and Eukaryotic microbes		✓	✓		✓							
Knowledge about viruses and their diversity		✓				✓				√		

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60Marks						
Formative Assessment Occasion/type	WeightageinMarks					
Attendance	10					
Seminar and Assignment	10					
Debates and Quiz	10					
Test	10					
Total	60marks + 40marks= 100 marks					

CourseTitle	MicrobialDiversity(Practical)	PracticalCredits	2
CourseNo.	MBL-103	DSC-4P	Contacthours	26 Hrs

Content

- 1. Isolation and identification of bacteria from soil, air and water
- 2. Isolation, and identification of fungi from soil, air and water
- 3. Isolation, and identification of Cyano bacteria
- 4. Isolation, and identification of Actinomycetes
- 5. Study of morphology of bacteria- cocci, bacilli, vibrio and spiral
- 6. Measurement of microbial cell size by Micrometry,
- 7. Spore count by haemocytometer
- 8. Type study: Cyanobacteria Nostoc, Microcystis Spirulina
- 9. Type study: Algae; Chlorella, Diatoms, Gracilaria
- 10. Type study: Fungi; Rhizopus, Saccharomyces, Agaricus
- 11. Type study: Protozoa: Euglena, Plasmodium, Trypanosoma
- 12. Study of micrographs /models -HIV,TMV,Coronavirus

Practical assessment

Assessment

Formative asso	essment	Summative Assessment	- T-4-1 M1
Assessment Occasion /type	Weightagein Marks	Practical Exam	Total Marks
Record	5		
Test	10	25	
Attendance	5	25	50
Performance	5		
Total	25	25	

References

- 1 Black, J.G. 2002. Microbiology-Principles and Explorations. John Wiley and Sons, Inc. New York
- 2 Brock, T.D. and Madigan, M.T. 1988. Biology of Microorganisms, VEdition. Prentice Hall. New Jersey
- 3 Dimmock,N.J.,Easton,A.J.,andLeppard,K.N.2001.IntroductiontoModernVirology.5thedition.BlackwellPublishing, USA
- 4 Flint,S.J.,Enquist,L.W.,Drug,R.M.,Racaniello,V.R.andSkalka,A.M.2000.PrinciplesofVirology-Molecular Biology, Pathogenesis and Control. ASMPress, Washington, D.C
- 5 Prescott, Harley, Klein's Microbiology, J.M. Willey, L.M. Sherwood, C.J. Woolverton, 7th International, edition, McGraw Hill
- 2008.
- 6 Vashishta, B.R, Sinha A. Kand Singh V.P. 2005. Botany Fungi, S. Chandand Company Limited, New Delhi
- 7 Kotpal, R. L. Protozoa 5th Edition 2008. Rastogi Publications, Meerut, New Delhi.
- 8 Madigan, M.T.Martinko, J.M,Dunlap, P.V.Clark,D.P.2009. BrockBiologyofMicroorganisms,12thedition,Pearson Benjamin Cummings
- 9 G.J.Tortora,B.R.Funke,C.L.2008. Microbiology–AnIntroduction,Case,10thedition.,Pearson Education, UK.
- 1 Stanier, 1987, Ingraham et al, General Microbiology, 4th and 5th edition Macmillane ducation limited

0

1	12. Alexopoulos, C.J., Mims, C.W. and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp, 4th edition.	
	13. Vashishta, B.R Sinha A.K and Singh V. P. 2005. Botany - Algae S. Chand and Company Limited, New Delhi	,
	14. Dubey R. C., and Maheshwari, D. K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & Company Ltd, New Delhi	
	15. K. P. Talaro, 2009. Foundations in Microbiology, 7th International edition, McGraw Hill	
		l

Date:

Subject Committee Chairperson

1 Pelczar Jr. Chan, Krieg, Microbiology- Concepts and Applications, International edition, McGraw Hill

Program Name	BSc Microbiology			Semester	em			
Course Title	Microbial Er	itrej	preneurship					
Course Code	MBL:303		se Code MBL:303		OE-3	No. of Theory Credits	3	
Contact hours	Lecture			Duration of ESA/Exam	2 H	ours		
Contact nours	Practical							
Formative Assessment Marks				Summative Assessment M	arks	60		

Course Pre-requisite(s):

Course Outcomes(COs): At the end of the course the student should be able to:

- 1. Demonstrate entrepreneurial skills
- 2. Acquire knowledge on Industrial entrepreneurship
- 3. Acquire knowledge on Healthcare Entrepreneurship

Content	42 Hrs
Unit-I	14 Hrs
General Entrepreneurship	
Entrepreneurship and microbial entrepreneurship-Introduction and scope, Business	
development, product marketing, HRD, Biosafety and Bioethics, IPR and patenting,	
Government organization/Institutions/ schemes, Opportunities and challenges.	
Unit-II	14 Hrs
Industrial Entrepreneurship	
Microbiological Industries – Types, processes and products, Dairy products, Fermented foods,	
Bakery and Confectionery, Alcoholic products and Beverages, Enzymes – Industrial production	
and applications. Biofertilizers and Biopesticides, SCP and SCO. Neutraceutical products.	
Unit-III	14 Hrs
Healthcare Entrepreneurship	
Production and applications: Sanitizers, Antiseptic solutions, Polyphenols (Flavonoids),	
Alkaloids, Cosmetics, Biopigments and Bioplastics, Vaccines, Diagnostic tools and kits.	

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

mmative Assessment=60Marks	
Formative Assessment Occasion/type	Weightage in Marks
Attendance	10
Seminar	10
Debates and Quiz	10
Test	10
Total	60marks + 40marks= 100 marks

References

- 1 Srilakshmi, B. (2007). Dietetics. New Age International publishers. New Delhi
- 2 Srilakshmi, B. (2002). Nutrition Science. New Age International publishers. New Delhi
- 3 Swaminathan, M. (2002). Advanced text book on food and Nutrition. Volume I. Bappco
- 4 Gopalan, C.RamaSastry, B.V. and Balasubramanian, S.C (2009). Nutritive value of Indian Foods. NIN. ICMR. Hyderabad.
- 5 MudambiSRandRajagopalMV.2008.FundamentalsofFoods,Nutrition&diettherapybyNewAgeInternat ional Publishers, NewDelhi. 5th edition.

Date:	Subject Committee Chairperson

Program Name	BSc Microbiology		Semester	IV Sem
Course Title	Microbial Enzymolog	gy and Metabolism		
Course No.	MBL:104	DSC -4T	No. ofTheoryCredits	4
Contact hours	56hrs		Duration of ESA/Exam	2Hours
Formative Asses	ssment Marks 40		Summative Assessment M	arks 60

Course Pre-requisite (s):

Course Outcomes(COs): At the end of the course the student should be able to:

- 1. Differentiating concepts of chemoheterotrophic metabolism and chemolithotrophic metabolism.
- 2. Describing the enzyme kinetics, enzyme activity and regulation.
- 3. Differentiating concepts of aerobic and an aerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms

14 Hrs
14 Hrs

Metabolism of aminoacids, nucleotides and lipids

1. Nitrogen Metabolism

Introduction to biological Nitrogen fixation, Ammonia assimilation. Assimilatory nitrate eduction, dissimilatorynitrate reduction, denitrification

2. Biosynthesis of ribonucleotides and deoxyribonucleotides

The denovo pathway of purines and pyrimidines, recycling by salvage pathway

- **3.** Aminoacid degradation and biosynthesis: Deamination and decarboxylation- An overview of aminoacids biosynthesis
- **4. Lipid degradation and biosynthesis**: β-oxidation of palmitic acid; Biosynthesis of palmitic acid.
- **5. Metabolism of one carbon compounds:** Acetogens: Autotrophic pathwayofacetatesynthesis
- **6. Metabolism of two-carbon compounds: Acetate**: **Acetic acid bacteria**:Ethanoloxidation, sugaralcoholoxidation. Glyoxylateandglycolate metabolism: i.Dicarboxylic acid cycle, ii. Glyceratepathwayiii. Beta hydroxylaspartate pathway

Oxalateas carbonand energysource

Unit-III	14 Hrs
Basics of Enzymes	
Introduction to enzymes- Definition, enzyme unit, specific activity and turnover number,	
exo/endoenzymes, constitutive/ inducedenzymes, isozymes. Monomeric, Oligomeric and	
Multimericenzymes.	
Multienzymecomplex: pyruvate dehydrogenase; isozyme: lactate dehydrogenase. Ribozymes,	
abzymes	
Structure of enzyme: Apoenzyme and cofactors, prosthetic group-TPP, coenzyme, NAD,	
metalcofactors. Classification of enzymes, Mechanism of action of enzymes: activesite,	
transition state complex and activation energy. Lock and key hypothesis and Induced	
Fithy pothesis.	
Multisubstrate reactions- Ordered, Random and Ping-pong.	
Unit-IV	14 Hrs
Enzyme Kinetics and Regulation	
Enzyme Kinetics: Kinetics of one substrate reactions. i.Equilibrium assumptionsii. Steadystate	
Assumptions iii. Lineweaver-Burk, Hanes-Woolf, Eadie-Hofstee equations and plots. Kinetics	
of enzymeinhibition. Competitive, non-competitive and uncompetitive inhibition. Effect of	
changes in pH and temperature on enzyme catalyzed reaction. Kinetics of two substrate	
reactions. Presteadystate kinetics. Kinetics of immobilized enzymes Enzyme regulation:	
Allosteric enzyme - general properties, Hill equation, Koshland Nemethy and Filmer model,	
Monod Wyman and Changeux model. Covalent modification by variousmechanisms.	
Regulation by proteolytic cleavage - blood coagulation cascade. Regulation of multi-enzyme	
complex- Pyruvate dehydrogenase. Feedback inhibition.	

$Course Articulation Matrix: Mapping of\ Course Outcomes (COs) with Program Outcomes (POs 1-12)$

CourseOutcomes(COs)/ProgramOutcomes(POs)		ProgramOutcomes (POs)										
	1	2	3	4	5	6	7	8	9	10	11	12
Differentiating concepts of chemoheterotrophic metabolism and chemolithotrophic metabolism		√						✓			✓	
Describing the enzymekinetics, enzymeactivity and regulation.		✓						✓			✓	
Differentiating concepts of aerobicandanaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms		✓						✓			✓	

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60Marks	
Formative Assessment Occasion/type	Weightage in Marks
Attendance	10
Seminar and Assignment	10
Debates and Quiz	10
Test	10
Total	60marks + 40marks= 100 marks

CourseTitle	Microbial Enzymology and Metabolism(Practical)		Practical Credits	2
CourseNo.	MBL:104	DSC-4P	Contact hours	

Content

- 1. Estimation of total lipid
- 2. Identification of fatty acids and other lipids byTLC
- 3. Isolation of lactose from bovine milk
- 4. Estimation of total sugars by the phenol-sulphuric acid method
- 5. Estimation of DNA-DPA method & UV absorbance method
- 6. Estimation of RNA(Orcinol method)
- 7. Determination of molar absorption oefficient (ϵ) of l-tyrosine
- 8. Estimation of polyphenols/ tannins by Folin-Denis method
- 9. Demonstration of alcoholic fermentation
- 10. Effect of variables on enzyme activity (amylase):a. Temperature b.pHc. substrate concentration d. Enzyme concentration
- 11. Determination of K_m and V_{max} of amylase (Line weaver-Burkeplot; Michaelis Mentonequation)
- 12. Identification of metabolic pathways through charts (Any 3)

Practical assessment

Assessment					
Formative ass	essment	Summative Assessment	TO (13/4)		
Assessment Occasion /type	Weightage in Marks	Practical Exam	Total Marks		
Record	5	25			
Test	10				
Attendance	5	25	50		
Performance	5				
Total	25	25			

References

- 1 Philipp. G. Manual of Methods for General Bacteriology.
- 2David T. Plummer. An Introduction to Practical Biochemistry
- 3 Wood W. B. Wilson J.H., Benbow R.M. and Hood L.E. 1981. Biochemistry- A Problem Approach, 2nd edition. The Benjamin/ Cummings Pub.co
- 4Segel I.R., 2nd edition., 2004, Biochemical calculations, John Wiley and Sons
- 5 Irwin H. Segel, 2nd Edition, Biochemical Calculations, John Wiley & Sons

Date:	SubjectCommitteeChairp	erson

ProgramName	BSc Microbiology		BSc Microbiology		Semester	IV S	em	
CourseTitle	Human Micro	Human Microbiome						
CourseCode	MBL:304 OE-4T		MBL:304		OE-4T	No. of Theory Credits	3	
Contacthours	Lecture			DurationofESA/Exam	Hou	ırs		
Contacthours Practical								
Formative Assessment Marks				Summative Assessment M	arks	60		

Course Pre-requisite(s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Articulate a deeper understanding on biological complexities of human microbiome.
- 2. Understand broader goals of biological anthropology.
- 3. Compare and contrast the micro biome of different human body sites and impact human health promotion

Content	42Hrs
Unit-I	14 Hrs
INTRODUCTION TO MICROBIOME	
Normal human microbiota and their role in health-gut microflora, skinmicroflora, microflora of	
reproductive and excretory system. Symbiotic and parasitic association.	
Unit-II	14 Hrs
MICROBIOMES AND HUMAN HEALTH	
Pre and post-natal Microbiome, Nutritional modulation of the gut microbiome for metabolic	
health-role of gut microbiomes in human obesity, human type2 diabetes.	
Influence of microbiome in aging.	
Probiotics-Criteria for probiotics, Development of Probiotics for animal and human use; Pre	
and synbiotics. Functional foods-health claims and benefits, Development of functional	
foods.	
Unit-III	14 Hrs
CULTURING OF MICROBES FROM MICROBIOMES	
Culturing of organisms of interest from the microbiome: bacterial, fungal, and yeast.	
Study of the microbiomegenome	
Microbiomes and diseases: Microbiome and disease risks: The gut microbiome and host	
immunity, bacteriocins and other antibacterials. Human microbiome research in nutrition	

Pedagogy

Summative assessment=40marks theory paper, End semester Exam duration of exam 2hours		
Formative Assessment Occasion / type	Weightage in Marks	
Assignment	10	
Seminar	10	
Case studies	10	
Test	10	
Total	40marks	

References			
1			
2			
3			
4			
5			

Date: Subject Committee Chairperson